Math

1.

To understand the academic performance of 1,000 students, the systematic sampling method is adopted to choose 40 samples. What should the sampling interval be?
2.

A tetrahedron's edge length is $\sqrt{ } 2$ and its four points are on a sphere, so what is the sphere's area?
3.

Given $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}-(2 \operatorname{sqrt}(3))\left(\sin ^{\wedge} 2(\mathrm{pi} / 2)\right)$:
A) Find $f(x)$'s smallest positive revolution
B) Find $f(x)$'s smallest value, given that the period is $[0,2 p i / 3]$
4.

As illustrated in the figure above，in the frame $x O y$ ，we have a line $1: x-y-2=0$ and a parabola $C: y^{2}=2 p x(p>0)$
I）If 1 passes through the focus of the parabola C，find the equation of the parabola．

II）Given that there are two different points P and Q that is symmetrical about line 1

1）Prove that the coordinates of the middle point of the line segment PQ is（2－p，－p）
2）Find the range of p ．

－ 2016 Jiangsu Gaokao

5.

，18．（16 分）在平面直角坐标系 $x o y$ 中，如图，已知椭圆 $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ 的左右顶点为 A, B ，右焦点为 F ，设过点， $T(t, m)$ 的直线 $T A, T B$ 与椭圆分别交于点 $M\left(x_{1}, y_{1}\right), N\left(x_{2}, y_{2}\right)$ ，其中 $m>0, y_{1}>0, y_{2}<0$ ．
（1）设动点 P 满足 $\mathrm{PF}^{2}-\mathrm{PB}^{2}=4$ ，求点 P 的轨迹
（2）设 $x_{1}=2, x_{2}=\frac{1}{3}$ ，求点 T 的坐标
（3）设 $t=9$ ，求证：直线 $M N$ 必过 x 轴上的一定点（其坐标与 m 无关）

Given an ellipse $x^{2} / 9+y^{2} / 5=1$ whose vertices are A and B and right focus F．Suppose that line TA and line TB which pass through $\mathrm{T}(\mathrm{t}, \mathrm{m})$ intersect the ellipse at $\mathrm{M}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{N}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ individually．$\left(\mathrm{m}>0, \mathrm{y}_{1}>0, \mathrm{y}_{2}<0\right)$

1) Moving point P satisfies equation $P^{2}-\mathrm{PB}^{2}=4$, find the track of P .
2) Assume that $x_{1}=2, x_{2}=1 / 3$, find the cooordinates of T
3) Assume that $\mathrm{t}=9$, prove that line MN must passes through a definite point on the x axis (whose coordinates are independant of m)

- 2010 Jiangsu Gaokao

6.

Assume a positive sequence $\{a n\}$, whose sum of the first n terms is Sn , given that $2 a n=a_{1}+a_{3}$, sequence $\{\sqrt{ } \mathrm{Sn}\}$ is an Arithmetic Sequence with a common difference d.

1) Find the general formula of the sequence $\{a n\}$ (in n and d)
2) Assume $c \in R$,for any positive integrals m, n and k that satisfy $\mathrm{m}+\mathrm{n}=3 \mathrm{k}$ and $\mathrm{m} \neq \mathrm{n}$,exists equality $\mathrm{Sm}+\mathrm{Sn}>\mathrm{cSk}$

- 2010 Jiangsu Gaokao

7.

Assume sequence $\{$ an $\}$ that satisfies $|a n-a(n+1) / 2| \leq 1, n \in N+$

1) Prove that $|a n| \geq 2^{\wedge}(n-1)\left(\left|a_{1}\right|-2\right)\left(n \in N^{*}\right)$
2) If $|a n| \leq(3 / 2)^{\wedge} n, n \in N^{*}$, prove that $|a n| \leq 2, n \in N^{*}$

- 2016 Zhejiang Gaokao

