Math

1.

To understand the academic performance of 1,000 students, the systematic sampling method is adopted to choose 40 samples. What should the sampling interval be?

2.

A tetrahedron's edge length is $\sqrt{2}$ and its four points are on a sphere, so what is the sphere's area?

3.

Given $f(x) = sinx - (2sqrt (3)) (sin^2(pi/2))$:

A) Find f(x)'s smallest positive revolution

B) Find f(x)'s smallest value, given that the period is [0,2pi/3]

4.

As illustrated in the figure above, in the frame xOy, we have a line 1:x-y-2=0 and a parabola $C:y^2=2px(p>0)$

I) If 1 passes through the focus of the parabola C,find the equation of the parabola.

II) Given that there are two different points P and Q that is symmetrical about line 1

1) Prove that the coordinates of the middle point of the line segment PQ is (2-p,-p)

2) Find the range of p.

– <u>2016 Jiangsu Gaokao</u>

5.
(18.(16分) 在平面直角坐标系 xoy 中,如图,已知椭圆 x² y²/5=1 的左右顶点为 A,B, 右焦点为 F, 设过点 T(t,m)的直线 TA,TB 与椭圆分别交于点 M(x₁,y₁), N(x₂,y₂),其中 m>0,y₁>0,y₂<0.
(1)设动点 P 满足 PF² - PB²=4,求点 P 的轨迹
(2)设 x₁=2,x₂=1/3, 求点 T 的坐标
(3)设 t=9,求证:直线 MN 必过 x 轴上的一定点(其坐标与 m 无关)

Given an ellipse $x^2/9+y^2/5=1$ whose vertices are A and B and right focus F.Suppose that line TA and line TB which pass through T(t,m) intersect the ellipse at M(x₁,y₁) and N(x₂,y₂) individually.(m>0,y₁>0,y₂<0) 1) Moving point P satisfies equation PF²-PB²=4, find the track of P.

2) Assume that $x_1=2$, $x_2=1/3$, find the cooordinates of T

3) Assume that t=9, prove that line MN must passes through a definite point on the x axis (whose coordinates are independent of m)

– <u>2010 Jiangsu Gaokao</u>

6.

Assume a positive sequence $\{an\}$,whose sum of the first n terms is Sn, given that $2an=a_1+a_3$,sequence $\{\sqrt{Sn}\}$ is an Arithmetic Sequence with a common difference d.

1) Find the general formula of the sequence {an}(in n and d)

2) Assume $c \in R$, for any positive integrals m,n and k that satisfy m+n=3k and m≠n, exists equality Sm+Sn>cSk

– <u>2010 Jiangsu Gaokao</u>

7.

Assume sequence $\{an\}$ that satisfies $|an-a(n+1)/2| \le 1, n \in \mathbb{N}+$

1) Prove that $|an| \ge 2^{(n-1)}(|a_1|-2)(n \in N^*)$

2) If $|an| \le (3/2)^n$, $n \in \mathbb{N}^*$, prove that $|an| \le 2$, $n \in \mathbb{N}^*$

- 2016 Zhejiang Gaokao